

technical data

S690/MAXIL[®] 690

High Strength, Quenched & Tempered Fine-Grain Structural Steel

Works Designation

MAXIL[®] 690 Q / MAXIL[®] 690 QL / MAXIL[®] 690 QL1 DIN EN S690 Q / S 690 QL / S690 QL1

Condition of Delivery

Water quenched and tempered.

Typical Applications

Heavy road vehicles: chassis, dumper bodies. Cranes construction: booms of mobile cranes. Structural steelworks: bridges, bridge components, components for offshore structures. Pressure vessels: fixed and transportable storage tanks, vessels. Power plants: penstocks, spiral cases. Materials handling: lifting and mobile equipment. Mining and earthmoving equipment: roof supports. Agricultural equipment and trailers.

Chemical Composition (Heat analysis in %)

С	Si	Mn	P	S	Cr	Мо	Ni	Al
0.20	0.80	1.70	0.020	0.005	1.50	0.70	2.0	0.015
max.	max.	max.	max.	max.	max.	max.	max.	min.

In addition: Ti or/and V or/and Nb.

The manufacturer reserves the right to change the chemical composition.

Mechanical Properties

Plate Thickness	Re	Rm	A5
Mm	MPa	MPa	%
≤ 50	690	770 - 940	14
> 50 ≤ 100	650	760 - 930	14
> 100	630	710 - 900	14

Notch Impact Energy

101011 111 0 101 0 1					
Steel Grade	Position of Samples	0°C	- 20°C	- 40°C	- 60°C
	Longitudinal	40 J	30 J		
S690Q/MAXIL [®] 690 Q	Transverse	30 J	27 J		
	Longitudinal	50 J	40 J	30 J	
S690QL/MAXIL [®] 690 QL	Transverse	35 J	30 J	27 J	
	Longitudinal	60 J	50 J	40 J	30 J
S690QL1/MAXIL® 690 QL1	Transverse	40 J	35 J	30 J	27 J

Number of Tests

Tensile test and impact test (3 samples), every 40 t, or per heat treatment unit respectively.

Fax: 01423 359222 www.ajmarshall.com sales@ajmarshall.com

Processing

Cold-Forming

The steel is suitable for cold-forming adhering to a bending or folding radius of > 4 times plate thickness longitudinal and > 3 times plate thickness transverse to rolling direction. A subsequent stress relief annealing is possible up to a temperature of 580°C.

Hot-Forming

Hot-forming above 580°C is possible. A subsequent quenching and tempering has to be carried out according to the conditions of delivery.

Milling

Drilling with cobalt-alloyed high-speed steels HSSCO. Cutting speed should be approximately 17-19 m/min. If HSS drills are used, cutting speed should be approximately 3–5 m/min.

Flame-Cutting

The temperature of the material should be at least RT for flame-cutting. In addition, the following preheating temperatures are recommended for certain plate thicknesses: For plate thicknesses over 40mm, preheat to 100°C and for thicknesses over 80mm, preheat to 150°C.

Welding

The steel is suitable for all current welding methods. The temperature of the material should be at least RT for welding. In addition, the following preheating temperatures are recommended for certain plate thicknesses: For plate thickness of 20-40mm, preheat to 75°C; for thicknesses over 40mm, preheat to 100°C; and for thicknesses over 60mm, preheat to 150°C. Interpass temperature should be between 150°C and 225°C.

These indications are standard values only, in principle, indications of SEW 088 should be adhered to.

The t 8/5 times should be between 5 and 25 s, depending on the welding technique used. Should stress relief annealing be necessary for constructional reasons, this should be done in the temperature range of 530°C-580°C.

Filler:

Welding Method	Type of Electrode		
E-Hand	FOX EV 85, FOX U 100 N	E11018-G	Böhler
	OK 75.75	E11018-M	ESAB
UP	U 100-UP, NiCrMo 2,5-UP/BB24 OK Autrod 13.44/OK Flux 10.62	EF6, F11A8-EM4-M4	Böhler ESAB
MAG	70-IG/M21	ER110S-G	Böhler
	OK Autrod 13.29, OK Tubrod 14.03	ER100S-G, E110T-G	ESAB

Full specification and details are available on request.

The above information is provided for guidance purposes only.

For specific design requirements please contact our technical sales staff.

