NA25B－P Current Transducer

Applications：

For the electronic measurement of circuits：AC，DC，pulsed，mixed，with a galvanic isolation between the primary（high power）and the secondary（electronic）circuits．

Main technical data：

1．Normal current $I_{P N}: 25 \mathrm{Arms}$
2．Measuring range $I_{P}: \quad 0 \sim+/-55 \mathrm{~A}$
3．Measuring resistance $@+85^{\circ} \mathrm{C}$ ：

with $\pm 12 \mathrm{~V}$	$@ \pm \mathrm{DC} 25 \mathrm{~A}:$	0Ω	252Ω
	$@ \pm \mathrm{AC} 25 \mathrm{~A}:$	0Ω	150Ω
with $\pm 15 \mathrm{~V}$	$@ \pm \mathrm{DC} 25 \mathrm{~A}:$	70Ω	366Ω
	$@ \pm \mathrm{AC} 25 \mathrm{~A}:$	70Ω	231Ω

4．Secondary normal current： 25 mA rms
5．Conversion ratio：1－2－3：1000
6．Supply voltage（ $+/-5 \%$ ）：$+/-12 \mathrm{~V} \sim+/-15 \mathrm{~V}$
7．Current consumption： $16 \mathrm{~mA}+$ Secondary output current
8．Isolation：Between primary and secondary＋test winding＋screen： $5 \mathrm{kV} \mathrm{rms} / 50 \mathrm{~Hz} / 1 \mathrm{~min}$

Accuracy－Dynamic performance

1．Accuracy＠ $\mathrm{I}_{\mathrm{PN}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}:+/-0.8 \%$
2．Non－linearity $\left(0 \sim+/-\mathrm{I}_{\mathrm{PN}}\right):+/-0.2 \%$
3．Offset current Io $@ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}:+/-0.15 \mathrm{~mA}$
4．Residual current＠ $\mathrm{I}_{\mathrm{P}}=0$ ，after an overload of $3 \mathrm{xI}_{\mathrm{PN}}$ ：less than $+/-0.25 \mathrm{~mA}$
5．Thermal drift of Io＠ $0^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$ ：$+/-0.6 \mathrm{~mA}$

$$
\text { (a) }-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}: \quad+/-0.7 \mathrm{~mA}
$$

6．Response time＠ 90% of I_{P} max：$\leq 500 \mathrm{~ns}$
7．di／dt accurately follewed：$>200 \mathrm{~A} / \mathrm{us}$
8．Frequency bandwidth（ -1 dB ）：DC $0 \sim 200 \mathrm{kHz}$

General data：

1．Operating temperature：$-25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
2．Storage temperature：$-40^{\circ} \mathrm{C} \sim+90^{\circ} \mathrm{C}$
3．Secondary coil resistance：$\leqslant 76 \Omega$
4．Weight： 22 g
5．Standards：EN 50178

Features：

1．Hall effect measuring principle
2．Galvanic isolation between primary and secondary circuit
3．Insulated plastic case made of white PPO recognized according to UL 94－V0
4．The whole current transducer comply with RoHS Directive completely

Dimension：

Drill holes size of the P．C．B．（Top view）：

Connection：

Number of premary turns	Primary current		Nominaloutput current$I_{S H}[\mathrm{~mL}]$	$\begin{gathered} \text { Turns ratio } \\ \mathrm{K}_{\mathrm{W}} \end{gathered}$	Primary resistance $\mathrm{R}_{\mathrm{p}}[\mathrm{m} \Omega]$	Primary insertion inductance $\mathrm{Lp}[\mathrm{uH}]$	Recommended connections	
	nominal IPN［A］	$\begin{gathered} \operatorname{maximum} \\ I_{P}[A] \end{gathered}$						
1	25	55	25	1：1000	0.18	0.013	OUT	
2	12	27	24	2：1000	0.81	0.05	OUT	
3	8	18	24	3：1000	1.62	0.12	OUT	

